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Abstract 

Model extrapolation to unseen flow is one of the biggest challenges facing data-driven turbulence 

modeling, especially for models with high dimensional inputs that involve many flow features. In this study 

we review previous efforts on data-driven Reynolds-Averaged Naiver Stokes (RANS) turbulence modeling 

and model extrapolation, with main focus on the popular methods being used in the field of transfer learning. 

Several potential metrics to measure the dissimilarity between training flows and testing flows are examined. 

Different Machine Learning (ML) models are compared to understand how the capacity or complexity of 

the model affects its behavior in the face of dataset shift. Data preprocessing schemes which are robust to 

covariate shift, like normalization, transformation, and importance re-weighted likelihood, are studied to 

understand whether it is possible to find projections of the data that attenuate the differences in the training 

and test distributions while preserving predictability. Three metrics are proposed to assess the dissimilarity 

between training/testing dataset. To attenuate the dissimilarity, a distribution matching framework is used 

to align the statistics of the distributions. These modifications also allow the regression tasks to have better 

accuracy in forecasting under-represented extreme values of the target variable. These findings are useful 
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for future ML based turbulence models to evaluate their model predictability and provide guidance to 

systematically generate diversified high-fidelity simulation database. 

Keyword: Turbulence modeling, Reynolds stress, Machine learning, dissimilarity, resampling 

1. Introduction  

Accurate and computationally feasible turbulent flows simulation is of critical importance to many 

practical applications, such as turbomachinery, mixing and combustion of reacting gases, atmospheric re-

entry vehicles, and commercial aircraft design. Despite the growth in computational power over the last 

decade, modeling and simulation of turbulent flows to a desired level of accuracy is still challenging. High 

fidelity simulations such as Direct Numerical Simulations (DNS) and Large Eddy Simulation (LES) 

continue to be largely computationally inaccessible for industrial enterprises.1 Reynolds-averaged Navier–

Stokes (RANS) simulation keeps being a workhorse Computational Fluid Dynamics (CFD) method due to 

its computational efficiency and easy implementation.2 Although scale-resolved predictions give better 

results, continued efforts to expand the affordable range of applicability and accuracy of RANS models 

remains crucial to the further evolution and application of CFD for industry.2 Turbulence modeling for the 

unclosed terms in RANS equations has traditionally evolved through a combined efforts of mathematics, 

flow theory, empiricism, and rudimentary data-driven techniques such as single or two variable curve-

fitting. However, RANS only resolves the largest energy containing motions of the flow, which results in 

unsatisfactory predictive accuracy in many complex flows or flow in different contexts.3 Many 

improvements have been proposed, but their use in the industry is still limited due to the need to tune many 

undetermined parameters based on dataset from particular classes of problems.4-6 Industry needs affordable 

predictions with defined uncertainty in an ever expanding range of conditions and geometric complexity. 

Recent ML-based methods, which can comprehensively utilize high-fidelity simulation data for 

improving turbulence modeling in RANS simulations, have gained significant interest due to ML’s 

remarkable approximation power and the increased availability of large data sets.7-9 The main concepts 

behind ML-based turbulence modeling is that instead of looking for the complete closure form, we could 
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presumably postulate a relationship between the unclosed terms with other known features and use neural 

network to fit unknown parameters. A comprehensive review of data-driven approaches that contain 

statistical inference and ML for turbulence modeling is presented in a recent article.10 The integration of 

ML with turbulence models is generally accomplished via three distinct strategies: (1) modeling the 

Reynolds stress anisotropic tensor directly from input features either derived from physics intuition11,12 or 

Galilean invariants (e.g. mean strain rate and rotation rate tensor)13-15; (2) modeling the deficiencies in the 

functional form of the production, destruction, and diffusion terms in turbulence transport equations16-18; 

(3) modeling new correction terms as the discrepancy between RANS and high-fidelity data in the 

turbulence model19-21.  

There are still limitations of the current state-of-the-art research. Among these limitations, model 

extrapolation to unseen flow is the biggest challenges facing data-driven turbulence modeling, especially 

for models with high dimensional inputs that involve many flow features. It will be ideal to establish data-

driven approaches that are generalizable to different or unseen scenarios, however, almost all previous work 

only demonstrate the predictive ability to limited flow cases that are similar to the training flow rather than 

validating the performance broadly for a wide range of flows. Even some studies22 presented that the 

proposed model shows good agreement when generalized to both interpolated and extrapolated cases, 

mostly the reason is that there is no qualitative difference between training and predicting cases. Many 

researchers reported that data-driven modeling has satisfying performance on similar flows, but the 

performance decreases dramatically on flows that are significantly different from the training cases. For 

example, Ling and Templeton12 reported that flow wake regions with very high turbulent intensity are 

labeled as extrapolation cases and have elevated error rates and poor prediction. In another study13, the 

proposed tensor based neural networks (TBNN) is only shown to work adequately for similar flows, but 

not for the test cases which deviate significantly from the training flows in both domain geometry and 

Reynolds number. Geneva and Zabaras23 built a library of five different flow cases, including converge-

diverge channel, square cylinder, periodic hills, square duct, and tandem cylinders, in the hope to capture 
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different flow physics. The used invariant neural network still proved difficult to train and yield satisfactory 

predictions for unseen flows and geometries. Wu24 attempted to extrapolate the flow in a different geometry 

from a square duct to a rectangular duct and encountered less success compared to testing on the same 

geometry. In a similar study, Wang19 also found that the improvement of the corrected Reynolds stresses 

for test cases with different geometries are not as drastic as in the scenario with the same geometry. Wu 

and his colleague20 presented a comprehensive framework for augmenting turbulence models using physics-

informed ML. To ensure the extrapolative capabilities of the learned function, the input variables are 

physically justified and properly normalized. They examined the model extrapolation capability by testing 

on 1) same geometry but different flow Reynolds number and 2) similar Reynolds number but different 

geometrical configurations. Their results show that a satisfactory predictive capability at lower Reynolds 

number does not necessarily guarantee a similar performance at a high Reynolds number. They concluded 

that existing data-driven turbulence models, including the one presented in their work, are still in their 

infancy and have shown only limited predictive capabilities. 

These previous efforts suggest that data-driven turbulence modeling can interpolate in between 

extremes but is unable to extrapolate much beyond its training cases. It is more likely that ML can merely 

fit and interpolate rather than reveal much flow physics from existing data. It has been argued25 that to 

ensure the predictability, ML should be used to learn the parameters or parametric functions within a 

traditional parameterization framework. ML algorithms with less interpretation, like the neural network and 

random forest, can be replaced with algorithms that are more interpretable like the symbolic regression and 

gene expression programming15,26. Because the known physics are hard coded, this could lead to better 

generalization capabilities and a reduction of the required data amount, but it cannot eliminate the burden 

of heuristically finding the framework equations. One can also argue that it has been proved for many 

decades that flow-specific tuning is inevitable for turbulence modeling and ML can be considered as an 

automatic tuning tool to replace the laborious modeling procedure. Since the extrapolation capability 

depends on the diversity of the training data, it seems fairly to claim that we can always use more 
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comprehensive databases with various flow physics to expand the performance range. However, resources 

are limited to generate high quality databases. Therefore, it is of great value to answer these questions: 

What are good metrics that can quantitatively measure the dataset variability? To what extreme can data-

driven turbulence modeling extrapolate and how to increase the predictability?  

In this study we review previous efforts on RANS turbulence modeling and the model extrapolation, 

with a main focus on the popular choices of input features and ML models. Several potential metrics to 

measure the dissimilarity between training flows and testing flows are examined. Different ML models are 

compared to understand how the capacity or complexity of the model affects its behavior when there is 

training/testing dataset dissimilarity. Data preprocessing procedures which are robust to covariate shift, like 

transformation, resampling, and importance re-weighted likelihood, are studied to figure out whether it is 

possible to find projections of the data that attenuate the differences in the training and test distributions 

while preserving predictability. These findings are useful for future ML based turbulence models to evaluate 

their model predictability and provide guidance to systematically generate high-fidelity simulation database. 

The paper is organized as follows. Section 2 reviews the ML assisted turbulence modeling, including 

ML modeling and input feature selection. Section 3 introduces the “flow over the bump” datasets that we 

use in this study. Section 4 summarizes the proposed dissimilarity metrics that determine how much the 

test flow is different from the training flows. Section 5 discusses data preprocessing procedures that can 

attenuate the dataset dissimilarity to improve model predictability. Section 6 concludes the paper.  

2. ML assisted RANS turbulence modeling  

2.1. RANS turbulence modeling 

The modeling of Reynolds stress is the fundamental closure problem that is introduced when the 

Navier-Stokes equations are averaged with respect to time. The RANS momentum equation is written as: 
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How to model the unclosed Reynolds stress anitropic tensor 〈𝑢𝑖
′𝑢𝑗

′〉 using the available flow field is the 

most important issue in RANS. Many RANS models rely on the Boussinesq hypothesis, as it yields accurate 

results in many simple shear flows and the additional eddy viscosity conveniently aids numerical 

convergence. The Boussinesq hypothesis is: 
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The turbulent kinetic energy is defined as half the trace of the Reynolds stress tensor, written as: 

 
𝜅 =

1

2
(〈𝑢𝑖

′2〉 + 〈𝑢𝑗
′2〉 + 〈𝑢𝑘

′2〉) (4) 

The majority of the popular RANS turbulence models use the Boussinesq approximation and introduce 

one or two additional transport equations. However, it relies on several underlying assumptions that are 

violated in many common flows. The turbulence related transport equations contain a set of tunable 

constants which are calibrated using a small number of simple test cases such as homogeneous turbulence 

and thin-shear flows. In addition, the models include pre-specified functional forms for the closure terms 

that are typically chosen using the knowledge of the flow physics and the intuition of the turbulence model 

developers. Given this development process, it is not surprising that accuracy diminishes as the model is 

applied to problems which deviate from the set of calibration cases. Some recent encouraging efforts have 

proposed more sophisticated models27, however, a paradigm shift is needed to effectively eliminate these 

limitations. 

2.2. ML models   

Figure 1 illustrates the work flow of the ML-assisted RANS simulation. To prepare the training dataset, 

the flow features are calculated from RANS simulations, whereas the Reynolds stresses are calculated from 

high-fidelity DNS/LES simulations.  ML models are trained to establish a functional relation between the 
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input (flow features) and output variables (Reynolds stresses or related parameters). The predicted Reynolds 

stresses are then substituted into the RANS solver to obtain corrected flow field.  

 

Figure 1. Schematically illustrate the workflow of ML-assisted RANS simulation.  

There are a variety of ML-based approaches for turbulence modeling. For example, a feed forward 

neural network is employed in establishing a functional relation between the mean flow quantities and the 

Reynolds stress tensor.28,29 Besides of the simple feed-forward neural network, a tensor based neural 

network (TBNN) was reported to have significant performance increase.13,30 The theoretical foundation of 

the tensor based neural network is the non-linear eddy viscosity model developed by S. Pope.31 In this 

model, the Reynolds stress anisotropic tensor is expressed as a function of the normalized mean rate-of-

strain tensor and rotation tensor. To enforce invariance to the coordinate transformation, the neural network 

is used to learn the tensor basis coefficients which are functions of five invariants. The basis of invariants 

of mean strain rate and rotation rate tensors with respect to the orthogonal group can be constructed using 

tables reported in paper14 which enumerate the relevant invariants for a symmetric and anti-symmetric 

tensor. The random forests is identified as the optimal approach to model RANS discrepancies based on 

the criteria of high dimensionality and interpretability.19 In our work, we examine four supervised learning 

algorithms: feedforward neural network (NN), random forests (RF), support vector machine (SVM), and 
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gradient boosting (GB), in the hope to find the optimal approach to build the functional form that is most 

suitable for turbulence modeling.  

With the ML algorithms identified, another challenge is to identify a set of mean flow features based 

on which ML algorithms can be constructed, the so-call feature selection. Feature selection is the process 

by which relevant input features for an error metric are chosen. In principle there are a huge number of 

possibilities and combination of input variable. Wang et al. employed a set of 10 invariant features for 

building the random forest regressor for Reynolds stress discrepancies.19 Duraisamy used a set of 

parameters including the full velocity gradient tensor, the transported scalars in transport equations, and all 

non-dimensional parameters that appear in the RANS model.17 Ling et al. proposed a systematic 

methodology for constructing an input feature set. Specifically, given a finite collection of raw inputs (i.e., 

tensors or vectors), a finite integrity basis of invariants can be constructed, and any scalar invariant function 

of the raw inputs can be formulated as a function of the corresponding invariant basis.14 

While the selection of these input features heavily relied on physical intuition and reasoning, it is 

inevitable that the selection introduces human judgement. Indeed, any combination of features could be 

used. However, it is possible that the input set may exclude important physical information if some key 

invariants are omitted. Therefore, it makes more senses to identify the raw input vectors and tensors which 

are related to the mean flow at the first step. In this work, the selected input variables are three flow features: 

velocity, pressure, and turbulence kinetic energy (TKE). These raw mean flow features are assumed to 

represent the important physical characteristics of the mean flow, which are also used as important elements 

for traditional turbulence modeling. It should be noted that the current work focuses on the assessment of 

similarity between the training and the test flows with the proposed measurement metrics in this work is 

applicable to other choice of flow feature spaces.  
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3. Flow cases for training and testing 

The turbulence model was evaluated for a family of five 2-D bumps of various heights (the “flow over 

the bump” dataset mentioned in the Introduction). The large eddy simulation (LES) dataset is a well-known 

NASA validation case for which the settings and computational grids can be found in previous literature.32 

The five bump cases have heights h = 20 mm, 26 mm, 31 mm, 38 mm, and 42 mm, with the same Reynolds 

number of 2500. With these five cases, 10 pairs of training and testing dataset pairs can be obtained. Table 

1 shows the 10 scenarios tested in this paper. Here, bump 20 stands for the case with bump height h = 

20mm. Figure 2 shows the contour plots of velocity x, velocity y, pressure, and TKE with bump height h = 

20 mm.  This case study is perfect to demonstrate the prediction performance for which the training flow 

and the test flow have different geometrical configurations. This scenario is also very realistic in the context 

of using RANS simulation to support engineering design and analysis that, the training data are more likely 

to be available for a few flows with specific Reynolds numbers and geometries, but predictions are needed 

for the similar flows yet with modified geometries. For example, studies are conducted to explore the 

feasibility of machine learning to assist airfoil design by interpolating unstructured shape parameters.22,33 

All airfoils have similar shapes with slightly different geometry configurations including attach angle, 

leading edge and trailing edge, and thickness to chord ratio, etc. To predict testing cases with totally 

different geometries from the training cases is very challenging and less successful.  
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Table 1. Ten combinations of flow cases tested.  

 

 

Figure 2. Contour plots of velocity x, velocity y, pressure, and TKE with bump height h = 20 mm. 

For each bump dataset, the grid points are 591 × 160 in x and y direction, so both the training and 

testing have 94560 samples. The hyperparameter tuning library, Tune34, is used to find optimal number of 

hidden layers, number of nodes, and dropout rate. The network training is stopped when the model error of 

the hold-out validation dataset (20% training) stopped decreasing. The network is found to have best 

prediction when the nodes and layers are [4, 32, 32 8, 8, 8, 3], and the dropout out is 0.2. Figure 3 shows 

the predicted Reynolds stresses versus real values for three different pair of datasets when using NN as the 

modeler. There are three components in the Reynolds stress for 2D simulation. The first two components 

in Reynolds stress tensor are easier to predict due to the largest variation. On the other hand, the third 

component is difficult to be approximated as the variation is relatively small. We gradually increase the 

training difficulty deliberately to test the model performance under various dataset dissimilarity. The result 

in Figure 3 suggests that better predictive performance is obtained when the training flow and the prediction 

flow are more similar. The first case has acceptable performance while the second and third cases fail to 

generate satisfactory prediction. This failure comes from the fact that the training and testing flow are 

Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 Case9 Case10

Train Bump 20 Bump 20 Bump 20 Bump 20 Bump 26 Bump 26 Bump 26 Bump 31 Bump 31 Bump 38

Test Bump 26 Bump 31 Bump 38 Bump 42 Bump 31 Bump 38 Bump 42 Bump 38 Bump 42 Bump 42
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significantly different that it beyond the predictability of the built model. In flow physics the lowest bump 

had no separation, while the highest bump produced a marginal separation. Bumps with h = 20, 26, 31 have 

trivia separation but bumps with h = 38 and 42 have considerable separation. We will introduce how to 

measure this dissimilarity from a statistical prospect in the next section.  

 

Figure 3. Testing results for three combinations of training and testing dataset pairs: (a) case 1; (b) case 2; (c) case 4. The 

R-squared, which is the proportion of the target variance that is predicted from the features, is reported in each case. The red 

dashed line is the perfect fitting y = x as a guide to the eye.  

Figure 4 shows the root mean squared error (RMSE) and mean absolute error (MAE) for four different 

ML algorithms. The hyperparamter tuning of SVM, GB, and RF is accomplished using GridSearchCV.35 

From the figure, all four methods have very close performance, neural network has slightly better 

performance with lower MAE than gradient boosting and random forest in most cases, indicating that neural 

network has better generalization ability particularly in this high-dimensional nonlinear regression study.   

(a) (b) (c)
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Figure 4. Root mean squared error and mean absolute error for four different ML algorithms.  

4. Dissimilarity metrics 

The unsatisfactory modeling extrapolation is due to the fact that unseen testing flow datasets usually 

have different distribution than the training dataset. Most predictive models are constructed under the 

assumption that the training/testing datasets are governed by the exact same distribution. For example, flow 

dataset of attached boundary layer has very different distributions than flow dataset with separation. Also, 

if none of the training cases have shock waves, it would not be surprising if the model performed poorly in 

a test set with a shock wave. While fluid scientists can distinguish flows with different physics and evaluate 

the relevance between training/testing cases using domain knowledge, it is still valuable to measure readily 

available high-fidelity CFD databases from a statistician’s view. Some metrics are examined to quantify 

the dissimilarity of two datasets considering both location distance and correlation structure difference.   

4.1. Dissimilarity decomposition  

The quantification of the dissimilarity is critical as it can set reasonable expectations of model 

prediction accuracy. The dissimilarity of two dataset 𝑋̅ and 𝑌̅ can be decomposed into three components 

that represent the differences in location, rotation, and “shape”, respectively.36 The location component is 

defined as the Euclidean distance, which measures the ordinary straight-line distance between the centroids 

of each dataset, or the Mahalanobis distance, in which the distance is scaled by component covariance. The 

rotation component is the measure of the angles between their principal components, it is the degree that 

(a) (b)
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one dataset must be rotated to align with the other principal component. The “shape” component accounts 

for the difference in the shape of the dataset distribution. Two variables in a dataset can be spread around 

its mean value or aligned in the same direction. Figure 5 schematically illustrates the dissimilarity metrics 

for four synthetic datasets. (a) similar datasets drawn from the same distribution; (b) datasets with location 

distance; (c) datasets with rotation distance; (d) datasets with shape distance. 

  

Figure 5. The illustration of dissimilarity metrics for four synthetic datasets. (a) similar datasets drawn from the same 

distribution; (b) datasets with location distance; (c) datasets with rotation distance; (d) datasets with shape distance. 

Location distance: This metric was presented to measure the extrapolation in different flow dataset 

by quantifying the centroid distance between the training and testing datasets.12,37 Euclidean distance is 

commonly used to measure the difference between two points or a point and a distribution. However, 

Euclidean distance will not work when features in high dimensional datasets are correlated to each other or 

not equally weighted. A statistical metric called the Mahalanobis distance measures not only the distance 

from the center of mass, but also the direction. The distance is scaled by the covariance matrix to account 

for the fact that the variances in each principle direction are different. Mahalanobis distance is defined 

(a) (b)

(c) (d)
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as 𝐷𝑑
2(𝑋, 𝑌) = (𝜇𝑋 − 𝜇𝑌)𝐶−1(𝜇𝑋 − 𝜇𝑌)𝑇 , where µ is the mean and C is the covariance matrix. If the 

variables in dataset are strongly correlated and the covariance is high, dividing the distance by a large 

covariance will effectively reduce the distance. The major drawback is that it requires the inversion of the 

covariance matrix, which can be computationally restrictive if variables are highly correlated.  

Rotation distance: The rotation distance measures the degree to which the testing dataset must be 

rotated so that its principle components point in the same direction as the training dataset. The principal 

components of a dataset are the set of orthogonal vectors such that the first vector points in the direction of 

greatest variance in the data, the second points in the orthogonal direction of the second greatest variance 

in the data, and so on. The two datasets are similar to each other if their principal components are aligned 

with each other. The rotation distance measures the summation of the angles between principal components 

as 𝐷𝑟(𝑋, 𝑌) = 𝑡𝑟𝑎𝑐𝑒 (𝑐𝑜𝑠−1 (𝑎𝑏𝑠(𝑉𝑋𝑉𝑌
𝑇))), where V is the principal components vector.   

Shape distance: Datasets with different distribution present different “shapes”. The kernel density 

estimation (KDE) distance is commonly used to measure how on probability distribution is different from 

a second reference probability distribution. The probability distributions usually are not known a priori, 

which means they need to be estimated from data. KDE is a non-parametric way to approximate the 

probability density function of multivariate variable without any pre-assumption of the distribution, it uses 

a mixture consisting of one Gaussian component per point, resulting in an essentially non-parametric 

estimator of density. The KDE is defined as Φ(x) =  
1

𝑛ℎ
∑ 𝐾 (

𝑥−𝑥𝑖

ℎ
)𝑛

𝑖=1 , where K is the kernel function and 

h is the bandwidth. The free parameters of kernel density estimation are the kernel, which specifies the 

shape of the distribution placed at each point, and the kernel bandwidth, which controls the size of the 

kernel at each point. The choice of bandwidth within KDE is extremely important to find a suitable density 

estimate: a too narrow bandwidth leads to a high-variance estimate (i.e., over-fitting), where the presence 

or absence of a single point makes a large difference. A too wide bandwidth leads to a high-bias estimate 

(i.e., under-fitting) where the structure in the data is washed out by the wide kernel. A Gaussian kernel is 
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commonly used, and the bandwidth is determined empirically via a cross-validation approach. The 

procedure of obtaining the KDE distance between two datasets with different lengths is first to obtain the 

kernel density estimated distribution Φ1 of the training dataset and the probability P1 of all training data 

points; then to obtain the kernel density estimated distribution Φ2 of the testing dataset and get the 

probability P2 evaluation on the training dataset; the KDE distance is then calculated.  

Figure 6 summarizes the three dissimilarity measures in different pairs of flow cases. Here, these 

distances are not normalized, which means the absolute value does not have a meaning. It is the comparison 

between different cases are the information we look for. The left figure shows that all three metrics are 

aligned when describing the dissimilarity. It is intuitive to see that Case 4 (bump h = 20 mm for training 

and h = 42 mm for testing, these two flows are very different) has the largest dissimilarity while case 5 

(bump h = 26 mm for training and h = 31 mm for testing, there two flows are similar) has the smallest 

dissimilarity.  

   

Figure 6. (a) Three dissimilarity measure in different pairs of flow cases;  (b) The relationship between the mean error of 

the prediction of Reynolds stress anisotropy and dissimilarity metrics.  

 

4.2. Dissimilarity vs. predictability  

We use different pairs of training/test dataset in table 1 to predict the flow over bump. By analyzing 

the mean prediction error of Reynolds stress anisotropy based on different training sets, we can see that 

(a) (b)
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there is a positive correlation between mean prediction error of Reynolds stress anisotropy and the 

dissimilarity metrics in Figure 6(b). This result suggests that better predictive performance is obtained when 

the training flow and the prediction flow are more similar. For example, the predictive performance is the 

best when both the training case and the testing case are from the same LES dataset when h = 31. In contrast, 

the worst performance occurs when training case h = 42 while testing on h = 31. By visualization it is 

intuitive to see that the two cases h = 42 and h = 31 are very different, the downstream separation in h = 42 

are much more severe that when h = 31. The lowest bump had no separation, while, the highest bump 

produced a marginal separation. 

5. Dissimilarity attenuation 

   While poor model performance is usually expected for a ML model when conducting extrapolation, 

the extrapolation capability is highly desirable and even critical for turbulence modeling, as dataset 

dissimilarity is common in turbulence modeling. It is of extreme importance to find projections of the data 

that can attenuate the differences while preserving predictability. To build models robust enough to account 

for distributional shift is not easy and still on-going research, however, there are data preprocessing schemes 

that can help improve model extrapolation, like transformation, resampling, and importance re-weighted 

likelihood.38 Many previous efforts have been tried to tackle this so called domain adaption 

problem.39,40,40,41,41,42,42 This section tries to find ways of improving the performance and also to determine 

the situations where a particular method results in a superior performance. 

5.1. Data transformation  

Data transformation, like nondimensionalization, standardization, threshold, and transformation may 

help to improve the extrapolation performance. For example, researchers noticed that dimensional 

quantities are not an appropriate choice for the input feature vector to the ML algorithm.12,18,20 Wu and his 

colleagues stated that the variables must be normalized properly to ensure extrapolative capabilities of the 

learned function.20 It is necessary to un-dimensionalize the features by relevant local quantities that are 

representative of the state of turbulence. Besides of dimensionless treatment, the flow data tended to vary 
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strongly even in order of magnitude.13,23 To tackle this, the data are scaled linearly into a predefined range 

to reduce the symptoms, while the distribution characteristic of the data is preserved. The most challenging 

part is that flow datasets usually are highly skewed and non-normally distributed with multiple dimensions. 

While ML algorithms like neural network estimator are model free and require no assumption on data 

distribution, many studies reported a significant performance enhancement when we modify the distribution 

characteristics of the dataset, so input features are skewed.43,44 Power transformation can reduce the 

skewness, whereas the Box-Cox procedure is commonly used to determine an appropriate power 

transformation. The standardization and power transformation are used in the flow data preprocessing in 

this study to attenuate the dataset dissimilarity.  

5.2.   Resampling  

While data transformation can attenuate the dissimilarity by reducing the location distance, the 

distribution difference of the data is still preserved. Resampling methods can reweight instances in the 

training data so that the distribution of training instances is more closely aligned with the distribution of 

instances in the prediction dataset. This is accomplished by providing more weighting to an instance in the 

training dataset that are similar to the prediction dataset. The optimal choice of the weight function is 

asymptotically shown to be the test-to-training density ratio.38 The densities ratio characterizes how much 

more likely an instance is to occur in the test sample than it is to occur in the training sample. The 

importance of the weighting scheme is intuitively understandable. If the probability of seeing a particular 

training instance in the prediction is very small, then this instance should carry little weight during the 

training process. In practice, the approach to resampling would be to first estimate the training and test 

densities separately and then estimate the ratio of the estimated densities of test and train. The estimated 

densities act as resampling weights for each instance in the training data. We adopted the Kullback-Leibler 

importance estimation procedure (KLIEP) to obtain the resampling weights to attenuate the training/testing 

dissimilarity, the detailed implementation of KLIEP can be found in previous paper.45  
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We re-measured the three dissimilarity metrics after the data transformation and data resampling. From 

Figure 7 it seems that the Mahalanobis distance and rotation distance increases after the preprocessing, but 

the KDE distance reduces drastically after resampling, rendering a distribution matching between 

training/testing dataset. A drawback of this preprocessing is that the rotation distance increases after 

resampling, it is our hope that this rotation metric is not dominating and will not affect the training 

performance.  

 

Figure 7. Comparison of the three dissimilarity metrics among raw data, standardization, and resampling. It shows that the 

(standardization+resampling) can drastically reduce the KDE distance, rendering a distribution matching between 

training/testing dataset.  

Another reason for resampling is that the flow datasets are very unbalanced that regions with rich 

physics are usually severely under-represented. These datasets include a large bulk region with very similar 

flow structures, making many training points redundant. In flow over flat plate, for example, points that 

have the largest predictive variance are these points close to wall in turbulence boundary layer, while the 

majority points in the outer layer contain less information. It is found in our flow cases that if we use all the 

flow dataset for training, ML models will over-smooth the entire prediction field in an attempt to cater 

towards the large number of data points in the bulk region, while the underrepresented rich physics is 

mispredicted. The errors are largest in regions where the adverse pressure gradient and separation occurs 

in the downstream. Although the entire flow domain seems to contain more relevant information, in practice 

it is more desirable to resample sub-datasets that contains more information in order to get improved model 

performance.  
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Upper-sampling of under-represented samples that contains most information can potentially increase 

the predictability.46-48 In Geneva’s paper30, only points that have the largest predictive variance for the 

Reynolds stress anisotropic component are selected for training. The resampling is found helpful to prevent 

the model from focusing too much on the bulk flow at which the prediction quality is poorer. Chawla48 

proposed an interpolation strategy, the Synthetic Minority Over-Sampling Technique (SMOTE), to create 

synthetic examples that have rare but important target values. A resampling approach is proposed to change 

the distribution of the given data set to attenuate the imbalance between the rare target cases and the most 

frequent ones. The strategy is to randomly select one of its k-nearest neighbors from the set of observations, 

then a new example is created with interpolated values of the two original cases. To decide which points 

are “rare”, the standardization and KLEIP resampling are conducted ahead this SMOTE technique so the 

datasets are well centered around zeros. The data points with absolute value > 2 are considered as “rare” 

cases, while points with absolute value < 2 are treated as “normal” cases. This classification is decided by 

the user and can be adjusted accordingly to obtain optimal modeling performance. The SMOTE technique 

is open-sourced as a python toolbox49.  The results comparison before and after pre-processing are presented 

in Figure 8. The errors are consistently reduced for all cases after the sampling schemes are applied.  These 

extensive set of experiments provide empirical evidence for the superiority of proposed schemes for these 

particular regression tasks. 

  

(a) (b)
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Figure 8. Errors comparison before and after the pre-processing. (a) RMSE, (b) MAE. 

6. Conclusion 

In this study we reviewed previous efforts on RANS turbulence modeling and the model extrapolation, 

with main focus on examining several methods to measure and attenuate the dissimilarity between training 

and testing flows. Data preprocessing schemes which are robust to covariate shift, like normalization, 

transformation, and importance re-weighted likelihood, are studied to find dataset projections that can 

attenuate the differences in the training and test distributions while preserving predictability. This 

dissimilarity measurement study can work as guidance on the choices of preprocessing schemes for ML 

assisted turbulence modeling to achieve better prediction performance. These findings are also useful for 

future ML based turbulence models to evaluate their model predictability and provide guidance to 

systematically generate high-fidelity simulation database. The dissimilarity metrics ideally will provide a 

direct indication of the need for additional data and drive the direction for further data-collection activities. 

For example, Wu stated that at high Reynolds number even Reynolds stresses with average errors below 

0.5 % will lead to the propagated mean velocities with large errors (up to 35 %).50 If one wants to keep the 

velocities error at a lower level, more training datasets are required to provide sufficient dataset diversity 

to restrain the dissimilarity. To attenuate the dissimilarity, a distribution matching framework is used to 

align the distributions of the source domains and target domain. These modifications also allow the 

regression tasks to have better accuracy in forecasting under-represented extreme values of the target 

variable. 

Future efforts can focus on finding more suitable assessment metrics. In all proposed metrics, only the 

inputs of the training and test data are used, and the information of the response is not needed. While these 

three metrics to some extend can measure the covariate data shift, it does not measure the prior probability 

shift and concept shift. These studies lack in considering and explaining the effect of the distribution of the 

target dataset which is as much decisive as input data on neural learning. Another future study is that 

embedding these error metrics with physical constrains into the loss function can potentially increase the 
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generalization ability. Incorporation of known physical constraints on the data-driven models will greatly 

reduce the demands on data and promote generalization.  
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